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This paper is concerned with a Chebyshev quadrature rule for approximating one
sided finite part integrals with smooth density functions. Our quadrature rule is
based on the Chebyshev interpolation polynomial with the zeros of the Chebyshev
polynomial TN+1({)&TN&1(t). We analyze the stability and the convergence for
the quadrature rule with a differentiable function. Also we show that the quadrature
rule has an exponential convergence when the density function is analytic. � 2001
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1. INTRODUCTION

We consider a numerical evaluation of a Chebyshev approximation rule
for the one sided finite part integral of the form

Q( f )==|
1

&1

f ({)
1&{

w({) d{, (1.1)

which has been extensively used in the application of boundary element
techniques to the solution of three-dimensional elasticity problems and in
solving the cylindrical wave equation (see [3] and [7]), where

w({)=(1&{): (1+{);, ;> &1, &1<:<0

and f (t) is assumed to be smooth on [&1, 1].
There exist many bibliographies on quadratures for the finite part

integrals of (1.1). We mention the papers [13, 16, 17] based on polynomial
interpolations. Recently, in [3, 4], Elliott considered the finite part integral
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(1.1) when ;=0, &n&1<:<&n, and n is nonnegative integer. In this
case, the finite part integral (1.1) can be interpreted as the fractional
derivative of order : of the funtion f defined in [&1, 1], at the point 1 (see
[3, 15]). In [3], Elliott showed that the integration method based on the
Bernstein interpolation polynomial with uniform abscissae converges to the
exact result for all continuously differentiable functions. Also the Gru� nwald's
algorithms [6] gives a simple algorithm evaluating the finite part integrals.
However, the convergence rate is very slow for computational purposes.
Recently, Elliott [4] made use of the Chebyshev polynomial to interpolate
f ({) instead of the Bernstein polynomial at the zeroes of the first kind
Chebyshev polynomial TN ({). It is known [4] that the Chebyshev inter-
polation method [4] for (1.1) can yield, in general, better convergence
than the Bernstein interpolation method [3], but the rule based on the
Bernstein interpolation has better stability properties than that based on
the zeros of TN ({).

In [10, 11, 12], we analyzed a trigonometric quadrature rule for a
Cauchy type integrals based on the trigonometric interpolation polynomial
at the practical abscissae. These method were originated from Clenshaw�
Curtis method [1] for the integral �1

&1 f ({) d{.
In this paper, we extend the Clenshaw�Curtis method for approximating

the finite part integral (1.1). To that end, we first rewrite equation (1.1) as

Q( f )=I( f )+ f (1) q0 ,

where

I( f )=|
1

&1

f ({)& f (1)
1&{

w({) d{. (1.2)

and

q0={
log 2 if :=;=0,

2:+; (:+;+1) 1(;+1) 1(:+1)
:1(:+;+2)

if ;>&1, &1<:<0.

(1.3)

Then the integral I( f ) of (1.2) is no longer defined in the finite part sense.
In the Clenshaw�Curtis method [1], the function f ({) is approximated

by a sum of Chebyshev polynomials Tk ({),

p f
N ({)= :"

N

k=0

bN
k Tk ({), &1�{�1, (1.4)
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where the coefficients bN
k are determined to satisfy the interpolation condi-

tions

f ({N
k )= p f

N ({N
k ), {N

k =cos
?k
N

, 0�k�N, (1.5)

and given as follows [1]:

bN
k =

2
N

:"
N

j=0

f ({N
j ) Tk ({N

j ), 0�k�N. (1.6)

A summation symbol with double primes denotes a sum with first and last
terms halved.

We now approximate f ({) and f (1) of (1.2) by p f
N ({) and p f

N (1), respec-
tively, and then introduce a new approximation IN ( f ) to the integral I( f )
as follows,

IN ( f )=I( p f
N)= :"

N

k=0

bN
k Jk , (1.7)

where

Jk=|
1

&1

T j ({)&Tj (1)
1&{

w({) d{. (1.8)

Alternatively, on using (1.4) and (1.6), the approximate integral IN ( f ) may
be expressed as

IN ( f )= :"
N

k=0

f ({N
k ) |N

k , (1.9)

where

|N
k =

2
N

:"
N

j=0

Tj ({N
k ) Jj . (1.10)

Then, using the rule (1.7) or (1.9), we derive a new quadrature method for
Q( f ) of the form

Q( f )=QN ( f )+EN ( f ) , (1.11)

where

QN ( f )=IN ( f )+ f (1) q0 , (1.12)
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where q0 is given in (1.3). We shall call the rules QN ( f ) and IN ( f ) as the
Chebyshev quadrature rules.

Using the three term recurrence relation for Tj ({), we show that Jj of
(1.8) can be explicitly calculated by a three term recurrence relation (see
Section 2, (2.1)). Also, by using the trigonometric polynomial of the form:
for { not multiple of 2?,

:$
n

j=0

cos j{=
sin \n+

1
2+ {

2 sin
{
2

, n�0, (1.13)

which will be used several times in this paper, we show that the weights |N
k

have the following expressions (see Lemma 2.1):

|N
k ={

(&1)k

N
:"
N

n=0

dn
TN&n(1)&TN&n({N

k )
1&{N

k

,

&
2
N

$:
N&1

j=0

:$
j

n=0

( j&n+1) dn ,

0<k�N,

k=0,
(1.14)

where

dn=&2 |
1

&1
Tn({) w({) d{, n�0,

which can be explicitly calculated (see Section 2, (2.2)). Define 4N by

4N= :"
N

k=0

||N
k |. (1.15)

Then 4N is very important numerically. Indeed, if g is any function for
which Q( f ) and QN ( f ) exist, then from (1.12), we have

EN ( f )=Q( f )&QN ( f )

=I( f )&IN ( f )

=I( f &g)+I(g)&IN (g)+IN (g& f ).

If for a given N, we choose g to be any polynomial pN of degree �N, then
since p g

N ({)= g({) and I(g)&IN (g)=I(g& p g
N)=0, we have

EN ( f )=I(rN)&IN (rN), (1.16)
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where rN ({)= f ({)& pN ({). Now the Eq. (1.9) shows that

|IN (rN)|�MN 4N , (1.17)

where

MN= max
{ # [&1, 1]

|rN ({)| and 4N= :"
N

k=0

||N
k |. (1.18)

The relations (1.16)�(1.18) show that the behaviour of the remainder
EN ( f ) depends on those of rN ({) and 4N . Hence we shall call 4N as the
stability factor of the quadrature rule (1.12).

In Section 3, we show that the stability factor 4N has the following
behaviour:

O(N&2:), &1<:<&
1
2

,

4N={O \N log
4N
? + , :=&

1
2

, (1.19)

O(N ), &
1
2

<:<0,

when ;=0. This shows that if &1<:<&1�2, then the present method
has a better stability properties than the Elliott's method [4] based on the
Chebyshev interpolation polynomial at the zeros of TN ({). Elliott has been
obtained the following behaviour for the stability factor:

4N=O(N &2: log N ).

The result (1.19), the relations (1.16)�(1.18) and some preliminary results
for rN ({) of (1.16), are used to prove that the error EN ( f ) of (1.11) has the
following behaviour (see Theorem 4.2):

O(N&2:& p&\), &1<:<&
1
2

,

|EN ( f )|={O \N1& p&\ log
4N
? + , :=&

1
2

(1.20)

O(N1& p&\) , &
1
2

<:<0
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when the function f ({) has continuous derivative up to order p�1 and its
derivative f ( p)({) satisfies Ho� lder continuity of order \, 0<\�1. This
result shows that the present method are substantially improved compared
with the one of Elliott's method (see [4, Theorem 4.6]).

Finally, in Section 5, we will show that the error EN ( f ) of (1.11) has an
exponential convergence rate when the function f is an analytic function in
[&1, 1] (see Theorem 5.2).

2. PRACTICAL IMPLEMENTATION

The first task in practice is to calculate the sequence [Jj] defined by
(1.8). To that end, we make use of the three-term recurrence relation for
the Chebyshev polynomial and the definition of Beta function. From the
recurrence relation of the Chebyshev polynomial, we see that

Tj+2({)&Tj+2(1)
{&1

=2
Tj+1({)&Tj+1(1)

{&1
&

Tj ({)&Tj (1)
{&1

+2Tj+1({)

and hence

Jj+2&2Jj+1+Jj=dj+1 , k�2, (2.1)

where dj are defined in (1.14). Applying the change of variable {=cos y to
the integrals dj and using the definition of the Beta function, we can have
the following expressions for dj [10],

dj=&2:+; :
j

i=0
\2j

2i+ (&1) j&i 1( j&i+:+1) 1(i+;+1)
1( j+:+;+2)

, j�0,

(2.2)

where 1( } ) denote the Gamma function. We easily see that

J0=0 (2.3)

and the definition of [dj] shows that

J1=&|
1

&1
w({) d{=

d0

2
. (2.4)
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Hence, once [dj] is computed by the formula (2.2), then we can calculate
[Jj] by using the recurrence relation (2.1) with the initial conditions (2.3)
and (2.4).

The next step, given the function f is to choose N and then to calculate
the function values f ({N

j ), 0� j�N. Note that there is a significant
economy if the value of N is doubled progressively; all previous function
values can then be reused, because

f ({N
j )= f ({2N

2j ) .

We assume that QN f is to be calculated by the formula (1.12). Then the
next step is to calculated the coefficients bN

j from (1.6). The Chebyshev
series may be calculated by using the Clenshaw recurrence method [1]. An
alternative procedure for evaluating the coefficients bN

j is the Fast Fourier
Transformation method (FFT) of [5]. That latter procedure will certainly
be the most efficient if N is very large.

When the coefficients bN
j are known, the approximate integral QNf is

calculated using (1.7) and (1.12). If the error so obtained is too large to be
acceptable, then the calculation can be repeated by doubling N. It is advan-
tageous to have more chances of checking the stopping criterion than by
doubling N, in order to enhance the efficiency of automatic quadrature. In
[19], Hasegawa et al. allowed N to take the forms 3_2n and 5_2n as well
as 2n, that is,

N=3, 4, 5, ..., 3_2n, 4_2n, 5_2n, ... (n=1, 2, ...). (2.5)

For a detail construction of [ p f
N ({)] by increasing N as in (2.5), we refer

to the paper [19].
In the rest of this section we consider the weights |N

k of (1.10).

Lemma 2.1. Let [|N
k ] be the weights defined in (1.10) and dn the

integrals defined in (1.14). Then we have that

|N
k =

(&1)k

N
:"
N

n=0

dn
TN&n(1)&TN&n({N

k )
1&{N

k

, 0<k�N (2.6)

and

|N
0 =&

2
N

$:
N&1

j=0

:$
j

n=0

( j&n+1) dn , (2.7)

where {N
k are the practical abscissae defined in (1.5).
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Proof. For showing (2.6), we let xk=cos&1 {N
k and x=cos&1 {. Then,

using the formula 2 cos x cos y=cos(x+ y)+cos(x& y), we find that

lN
k ({) :=

2
N

:"
N

j=0

Tj ({N
k ) T j ({)

=
1
N

:"
N

j=0

(cos j(x+xk)+cos j(x&xk)).

Now from the formula (1.13), we can show that

\
cos

x+xk

2
sin

x&xk

2
sin N(x+xk)

+sin
x+xk

2
cos

x&xk

2
sin N(x&xk)+

l N
k ({)=

N(cos xk&cos x)
.

Since xk=?k�N,

sin N(x\xk)=(&1)k sin Nx

whence we have that

lN
k ({)=

(&1)k

N
sin Nx sin x

cos xk&cos x

=
(&1)k

N
UN&1({)(1&{2)

{N
k &{

=
(&1)k

2N
TN&1({)&TN+1({)

{N
k &{

, (2.8)

where Un({) are the second kind of the Chabyshev polynomial. This
Eq. (2.8) shows that the weights |N

k of (1.10) can be written as

|N
k =

(&1)k

2N |
1

&1

TN&1({)&TN+1({)
({N

k &{)(1&{)
w({) d{

=
(&1)k

2N
1

{N
k &1 |

1

&1
w({) \TN&1({)&TN+1({)

1&{

&
TN&1({)&TN+1({)

{N
k &{ + d{. (2.9)
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Since {N
k are the zero points of the polynomial of TN&1({)&TN+1({), we

can have that for any 0�k�N,

TN&1({)&TN+1({)
{N

k &{

=
TN&1({)&TN&1({N

k )
{N

k &{
+

TN+1({N
k )&TN+1({)
{N

k &{
. (2.10)

Elliott [2] gives the following identity involving the second kind of the
Chebyshev polynomial:

Tk+1({)&Tk+1({N
k )

{&{N
k

=2 :$
k

n=0

Uk&n({N
k ) Tn({), k�0. (2.11)

Using the identities Uk ({)&Uk&2({)=2Tk ({), (k�1), where we define
U&1({)=0, and (2.10) and (2.11) give

TN&1({)&TN+1({)
{N

k &{
=4 :"

N

n=0

TN&n({N
k ) Tn({). (2.12)

Combining (2.9) and (2.12) and using the definition of dn of (1.14), we have
the identity (2.6). To show (2.7), we note that from (2.11),

Tj+1({)&1
{&1

=2 :$
j

n=0

U j&n(1) Tn({), j�0. (2.13)

Now using (1.10), (2.8) and (2.13), we can write |N
0 as follows:

|N
0 =

2
N

:"
N

j=0
|

1

&1

Tj ({)&Tj (1)
1&{

w({) d{

=
4
N

$:
N&1

j=0

:$
j

n=0

Uj&n(1) |
1

&1
Tn({) w({) d{

Hence using the definition of dn of (1.14), we can complete the proof. K

3. ASYMPTOTIC BEHAVIOUR FOR 4N

In this section, we shall estimate the asymptotic behaviour for the
stability factor 4N of (1.18) using the expression (2.6) and (2.7) for the
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weights |N
k . For simplicity of our analysis, we assume that ;=0 in the

weight function of (1.1), throughout this section.

Theorem 3.1. Let |N
k be weights defined in (1.10) and let [d j] be a

sequence defined in (1.14). Assume that &1<:<0 and ;=0. Then we have
that

||N
0 |�c1(:) N&2:, (3.1)

where

c1(:)=
2:?

1+:
+

?2:22&:

|:|
.

Proof. From the definition of dj of (1.14) and the expression (2.7), we
find that

|N
0 =

4
N

$:
N&1

j=0

:$
j

n=0

( j+1&n) |
1

&1
Tn({) w({) d{

(using the change of variable {=cos y)

=
2:+3

N |
?

0
sin2:+1 y

2
cos

y
2

g( y) dy, (3.2)

where

g( y)= $:
N&1

j=0
\( j+1) :$

j

n=0

cos ny& :
j

n=1

n cos ny+ .

Using the following identities,

:$
j

n=0

cos ny=
sin \ j+

1
2+ y

2 sin
y
2

,

:
j

n=1

n cos ny=
( j+1) sin \ j+

1
2+ y

2 sin
y
2

&
1&cos( j+1) y

4 sin2 y
2

, (3.3)
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the function g( y) given in (3.2) can be written as

g( y)=
csc2 y

2
4

$:
N&1

j=0

(1&cos( j+1) y)

=
csc3 y

2
8 \2N sin

y
2

&sin Ny cos
y
2+ . (3.4)

Substituting (3.4) into (3.2) gives

|N
0 =

2:

N |
?

0
sin2:&2 y

2
cos

y
2 \2N sin

y
2

&sin Ny cos
y
2+ dy

(using the change of variable y=2x)

=
2:+1

N |
?�2

0
sin2:&2 y cos y(2N sin y&sin 2Ny cos y) dy

=A+B, (3.5)

where

A=
2:+1

N |
?�(2N )

0
sin2:&2 y cos y(2N sin y&sin 2Ny cos y) dy

B=
2:+1

N |
?�2

?�(2N )
sin2:&2 y cos y(2N sin y&sin 2Ny cos y) dy.

For estimating A, we note that

2N sin y&sin 2Ny cos y
sin3 y

�
2
3

(N+2N3), y # _0,
?

2N& .

Hence we have that

A�
2:+2(N+2N3)

3N |
?�(2N )

0
sin2:+1 y dy

\using the fact
2y
?

�sin y� y

and \2y
? +

2:+1

�1, when &1<:<&
1
2+
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�
2:+2(N+2N3)

3N |
?�(2N )

0 \2y
? +

2:+1

dy

=
2:?

3(1+:)
N&2: \ 1

N2+2+
�

2:?
1+:

N&2:. (3.6)

Since

}2N sin y&sin 2Ny cos y
sin y }�4N, y # _0,

?
2& ,

B can be bounded as follows:

B�2:+3 |
?�2

?�(2N)
sin2:&1 y cos y dy

=
2:+2

: \1&\ ?
2N+

2:

+
�N&2: ?2:22&:

|:|
. (3.7)

Finally, substituting (3.6) and (3.7)) into (3.5) gives the desired result (3.1).

Using this Theorem 3.1, the expression (2.6) for |N
k and the definition of

[dj] defined in (1.14), we can obtain the following behaviour for the
stability factor 4N .

Theorem 3.2. Let |N
k be weights defined in (1.10) and let [d j] be a

sequence defined in (1.14). Assume that &1<:<0 and ;=0. Then the
stability factor 4N of the rule (1.11) satisfies

CN&2:, &1<:<&
1
2

,

4N�C{N log
4N
?

, :=&
1
2

, (3.8)

N, &
1
2

<:<0,

where C is a constant depending only on :.
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Proof. The formulae (2.6) and the definition of dn given in (1.14) show
that

|N
k =

(&1)k

N(1&{N
k ) \ :"

N

n=0

dn&(&1)k :"
N

n=0

dn cos
?kn
N +

(using the change of variable {=cos y)

=&
2:+2(&1)k

N(1&{N
k ) |

?

0
sin2:+1 y

2
cos

y
2

:"
N

n=0

cos ny \1&(&1)k cos
?kn
N + dy

=&
2:+2(&1)k

N(1&{N
k ) \| ?

0
sin2:+1 y

2
cos

y
2

sin Ny cos
y
2

2 sin
y
2

dy

&
1
2 |

?

0
sin2:+1 y

2
cos

y
2

sin Ny sin y
{N

k &cos y
dy+

=
2:+1

N |
?

0
sin2: y

2
cos

y
2

sin Ny
1

{N
k &cos y

dy.

Hence we have

$:
N

k=1

||N
k |�A+B, (3.9)

where

A=
2:+1

N |
?�(2N )

0
sin2: y

2
cos

y
2

sin Ny :
N

k=1

1
cos y&{N

k

dy,

B=
2:+1

N |
?

?�(2N )
sin2: y

2
cos

y
2

|sin Ny| :
N

k=1

1
|{N

k &cos y|
dy.

If we let t=cos y and tk={N
k , then since tk are the zeros of TN+1(t)&

TN&1(t), we have

:
N

k=0

1
t&tk

=
(N+1) UN (t)&(N&1) UN&2(z)

TN+1(t)&TN&1(t)
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whence

:
N

k=1

1
cos y&{N

k

=
csc2 y

2
2

&(cot y+N cot Ny) csc y

�
2N2+1

6
, y # _0,

?
2N& .

Thus, we find that

A�
(2N2+1) 2:+1

6N |
?�(2N )

0
sin2:+1 y

2
sin Ny

sin
y
2

dy

�
(2N2+3) 2:+1

6 |
?�(4N )

0
sin2:+1 y dy

(using the same technique with (3.6))

�
(2N2+3) 2:+1

6 |
?�(4N )

0 \2y
? +

2:+1

dy

=
2&4&aN &2(1+:)(3+2N2) ?

3(1+:)

�
?

(1+:) 24+: N &2:, if N�2. (3.10)

For estimating B of (3.9), we make use of the mean value theorem for the
integral and the change of variable y�2=x. Then we have

B=
2:+1

N
:
N

k=1
} sin N% cos

%
2

{N
k &cos % } | ?�2

?�(4N )
sin2: x cos x dx,

for some % # _ ?
2N

, ?&
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=B1 {
1

1+2: \1&sin1+2: ?
4N+ ,

&log sin
?

4N
,

:{&
1
2

:=&
1
2

1
|2:+1| 22:+1 N&2:&1, &1<:<&

1
2

,

�B1{ log
4N
?

, :=&
1
2

,

1
2:+1

, &
1
2

<:<0,

(3.11)

where

B1=
1
N

:
N

k=1
}sin N% cos

%
2

{N
k &cos % } .

For estimating B1 , we assume that % # ( ?
2N , ?

N) or % # ( l?
N , (l+1) ?

N ) for some
fixed l, (1�l< N

2 .) We first consider the case % # ( ?
2N , ?

N). In this case, we
can estimate B1 as follows:

B1�
1
N

sin N% cos
%
2

cos %&cos
?
N

+
1
? |

?

?�N

sin N% cos
%
2

cos %&cos y
dy

=
1
N

sin N% cos
%
2

cos %&cos
?
N

+
1
?

sin N% cos
%
2

sin %
log } sin(%+?�N )�2

sin(%&?�N )�2 }

=O(N). (3.12)

We now assume that % # ( l?
N , (l+1) ?

N ) for some fixed l, (1�l< N
2 ) and split

the sum B1 as three parts,

B1=B1
1+B2

1+B3
1 , (3.13)
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where

B1
1=

} sin N% cos
%
2 }

N \ 1
|cos ?l�N&cos %|

+
1

|cos ?(l+1)�N&cos %|+ ,

B2
1=

1
N

:
l&1

k=1
}sin N% cos

%
2

{N
k &cos % } ,

B3
1=

1
N

:
N

k=l+2
} sin N% cos

%
2

{N
k &cos % } .

Since % # ( l?
N , (l+1) ?

N ), by using the Cauchy's theorem and the fact, we find
that

B1
1� } cos N/

sin / }+ } cos N/$
sin /$ } , for some /, /$ # \?l

N
,

?(l+1)
N +

� } 1
sin / }+ } 1

sin /$ }
=O(N ). (3.14)

The summation B2
1 and B3

1 can be estimated by making use of the lower
sum of the Riemann integral. We first consider the summation B2

1 . Since
cos y&cos % is a decreasing function on [?�N, ?l�N], we see that

B2
1�

1
? |

?l�N

?�N

} sin N% cos
%
2 }

cos y&cos %
dy

=
} sin N% cos

%
2 }

? sin %
log } sin[(%+?l�N )�2] sin[(%&?�N )�2]

sin[(%&?l�N )�2] sin[(%+?�N )�2] }
=O(N ). (3.15)
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Since cos %&cos y is an increasing function on [?(l+1)�N, ?], we have
that

B3
1�

1
? |

?

?(l+1)�N

} sin N% cos
%
2 }

cos %&cos y
dy

=
} sin N% cos

%
2 }

? sin %
log } sin[(%+?(l+1)�N )�2]

sin[(%&?(l+1)�N )�2] }
=O(N ). (3.16)

Summarizing (3.11)�(3.16), we have that

N&2:, &1<:<&
1
2

,

B�C{N log
4N
?

, :=&
1
2

, (3.17)

N, &
1
2

<:<0.

Finally, combining (3.10) and (3.16), then from (3.9) and Theorem 3.1, we
can complete the proof. K

Remark 3.1. In [4], Elliott showed that the stability factor 4N for the
rule based on the classical abscissae has the behaviour of the form:

4N=O(N &2: log N ).

Hence from (1.17) and (3.8), we see that the Chebyshev interpolation
method based on the practical abscissae has a better stability properties
than that based on the classical abscissae.

4. CONVERGENCE RESULTS FOR CONTINUOUSLY
DIFFERENTIABLE FUNCTIONS

In this section we shall derive a bound for the error |EN ( f )| when the
function f is differentiable and its derivative is Ho� lder continuous. To that
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end, we quote the following known results. For the proof, we refer to the
reference [9, 14, 18].

Lemma 4.1. Suppose the function f ({) possesses continuous derivatives up
to order p�1 and the derivative f ( p)({) satisfies Ho� lder continuity of order
\. Then there exists a polynomial pN ({) of order N such that

max
{ # [&1, 1]

| f ({)& pN ({)|�
M0

N p+\ and | pN ({)& pN (t)|�N0 |{&t|,

(4.1)

where M0 and N0 are constants independent of N and { and t. Further, for
rN ({)= f ({)& pN ({), we have

|r (k)
N ({)|=O(N &p&\+k), k=1, 2, ... . (4.2)

Using this Lemma 4.1 and the previous Theorem 3.2, we have the following
error bound for the quadrature rule (1.12).

Theorem 4.1. Let us consider the quadrature rule (1.11). Suppose the
function f ({) possesses continuous derivatives up to order p�1 and the
derivative f ( p)({) satisfies Ho� lder continuity of order \. Then the remainder
term EN ( f )=Q( f )&QN ( f ) satisfies

O(N&2:& p&\), &1<:<&
1
2

,

|EN ( f )|={O \N1& p&\ log
4N
? + , :=&

1
2

, (4.3)

O(N1& p&\), &
1
2

<:<0.

Proof. By the facts (1.16), Theorem 3.2 and Lemma 4.1, we can easily
prove the theorem. Indeed, for rN ({)= f ({)& pN ({), the fact (1.16) shows
that

|EN ( f )|�|I(rN)|+ max
{ # [&1, 1]

|rN ({)| :"
N

k=0

|wN
k |

�A1+A2 , (4.4)
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where

A1=|
1

&1
w({) } rN ({)&rN (1)

1&{ } d{, A2= max
{ # [&1, 1]

|rN ({)| :"
N

k=0

|wN
k |.

The inequality (4.1) and the result of Theorem 3.2 show that the term A2

has the behaviour

O(N&p&\&2:), &1<:< &
1
2

,

A2={O \N &p&\+1 log
4N
? + , :=&

1
2

, (4.5)

O(N&p&\+1), &
1
2

<:<0.

For estimating A1 , we use the mean value theorem and the fact (4.2). Then
we have

A1=|
1

&1
w({) |r$N (/)| d{

� max
{ # [&1, 1]

|r$N ({)| |
1

&1
w({) d{

=O(N&p&\+1) |
1

&1
w({) d{. (4.6)

Therefore, substituting the asymptotic behaviours (4.5) and (4.6) into (4.4),
we have the desired result (4.3). K

5. CONVERGENCE RESULTS FOR ANALYTIC FUNCTIONS

In this section we shall derive error bounds for the proposed quadrature
rule of (1.12) when the function f is analytic. Let =} denote the ellipse in the
complex z=x+iy with foci (x, y)=(&1, 0), (1, 0) and semimajor axis
a= 1

2 (}+}&1) and semiminor axis b= 1
2 (}&}&1) for a constant }>1.

Assume that f (z) is single-valued and analytic inside and on =} . Then, by
using the Cauchy's formula for the function f and the series expansion

:$
�

k=0

Tk ({)

(z+- z2&1)k
=

- z2&1

2(z&{)
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we can have the following series expression for the remainder of the
interpolation error [8, (3.2)],

f ({)& p f
N ({)=

1
2?i �

=}

|N+1({) f (z)
(z&{) |N+1(z)

dz

=|N+1({) :$
�

k=0

V N
k ( f ) Tk ({) , (5.1)

where |N+1({)=TN+1({)&TN&1({)=2({2&1) UN&1({), N�1 and

V N
k ( f )=

1

?i �
=}

f (z)

|N+1(z) - z2&1 (z+- z2&1)k
dz, k�0.

(5.2)

Thus, from (1.11) and (5.1) we obtain an explicit expression for the error
in the approximate integration rule (1.12) as follows,

EN ( f )=I( f &p f
N)= :$

�

k=0

V N
k ( f ) 0N

k , (5.3)

where 0N
k =I(|N+1Tk). Hence for estimating |EN ( f )|, we need the

behaviours for V N
k ( f ) and 0N

k . We first consider the terms V N
k ( f ) given in

(5.2). To that end, we assume that f (z) is a meromorphic function which
has M simple poles at the points zm (m=1, 2, ..., M ) outside of =} with
residues Resf (zm). Then performing the contour integral (5.2) gives

|V N
k ( f )|�}

*
&k |V N

0 ( f )|=O(}
*
&k&N) (5.4)

and

|V N
0 ( f )|t |bN

N |
}

*
}2

*
&1

, (5.5)

where }
*

=min1�m�M |zm+- z2
m&1|>1. For a detail proof, we refer the

paper [8] and reference there in. We now consider the terms 0N
k of (5.3).

By using the relation

2Tm(t) Tn(t)=Tn+m(t)+T |n&m|(t) , n, m�0 (5.6)
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and the definition of 0N
k in (5.3), it follows that

20N
k =|

1

&1 \
TN+k+1({)&TN+k&1({)

1&{

\
T |N&k|+1({)&T |N&k| &1({)

1&{ + w({) d{, k�0 , (5.7)

where the plus sign is taken if N&k�1 and the minus sign if k&N�1.
Further, the second integrand of (5.7) should be ignored with N=k. Now
applying the formula (2.10) to the Eq. (5.7), we have

0N
k ={

2 :"
N+k

n=0
|

1

&1
Tn({) w({) d{

\2 :"
|N&k|

n=0
|

1

&1
Tn({) w({) d{, |N&k|�1,

2 :"
N+k

n=0
|

1

&1
Tn({) w({) d{, N=k.

(5.8)

Thus we can see that the terms 0N
k are bounded independent of k as

follows:

Lemma 5.1. Let 0N
k be defined by (5.3) and let &1<:<0 and &1<;

be fixed. Then we have, for any k�1,

|0N
k |�{N,

1,
&1<:�& 1

2 ,
& 1

2<:<0.
(5.9)

Proof. Applying the change of variable {=cos y to the integrals in
(5.8), we have

0N
k =2:+2{

|
?

0
sin2:+1 y

2
cos2;+1 y

2

_\ :"
N+k

n=0

cos ny\ :"
|N&k|

n=0

cos by+ dy, N{k,

|
?

0
sin2:+1 y

2
cos2;+1 y

2
:"

N+k

n=0

cos ny dy, N=k.

(5.10)
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From the formula (1.13), we note that

:"
m

n=0

cos ny=
sin 2my

2 sin
y
2

.

Hence the expression (5.10) for 0N
k can be written as follows:

0N
k =2:+1{

2 |
?

0
sin2:+1 y

2
cos2;+1 y

2
cos 2ky

sin 2Ny

sin
y
2

dy, N{k

|
?

0
sin2:+1 y

2
cos2;+1 y

2
sin 4Ny

sin
y
2

dy, N=k

whence we can easily get the bound (5.9). K

Combining (5.3) and (5.9), the bound of |EN ( f )| becomes

|EN f |�H(:; N ) :$
�

k=0

|V N
k ( f )| , (5.11)

where H(:; N ) is defined by

H(:; N )={N,
1,

&1<:�& 1
2 ,

& 1
2<:<0.

(5.12)

Finally the asymptotic behaviour of |V N
k ( f )| given in (5.4) and (5.5) gives

that

:$
�

k=0

|V N
k ( f )|�|V N

0 ( f )| :$
�

k=0

}
*

&k

=
|V N

0 ( f )| (1+}
*

)
2(}

*
&1)

=O \ |bN
N|

}
*

2(}
*

&1)2+ . (5.13)

From (5.4) and (5.5), we also find that

|bN
N |=O(}

*
&N).
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Thus the inequality (5.13) gives

:$
�

k=0

|V N
k ( f )|=O \ }

*
&N+1

2(}
*

&1)2+ . (5.14)

Summarizing the series of the above inequalities (5.11)�(5.14), we then get
the following main theorem for this section.

Theorem 5.1. Let f (z) is a meromorphic function which has M simple
poles at the points zm (m=1, 2, ..., M ) outside of ={ with residues Resf (zm).
Then for f # A(={),

|EN f |=O( |bN
N| H(:; N ))

=O \H(:; N )
}

*
&N+1

2(}
*

&1)2+ , (5.15)

where }
*

=min1�m�M |zm+- z2
m&1|>1, bN

N and H(:; N ) are given in
(1.6) and (5.12), respectively.

REFERENCES

1. C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic
computer, Numer. Math. 2 (1960), 197�205.

2. D. Elliott, Truncation errors in two chebyshev series approximations, Math. Comp. 19
(1965), 234�248.

3. D. Elliott, An asymptotic analysis of two algorithms for certain hadamard finite-part
integrals, IMA J. Numer. Anal. 13 (1993), 445�462.

4. D. Elliott, Three algorithms for hadamard finite-part integrals and fractional derivatives,
J. Comp. Appl. Math. 62 (1995), 267�283.

5. W. H. Press et al., ``Numerical Recipes in C,'' 2nd ed., Cambridge University press,
Cambridge, UK, 1992.

6. K. A. Grunwald, Uber begrenzte derivationen und deren anwendung, Z. Math. Phys. 12,
441�480.

7. J. Hadamard, ``Lectures on Cauchy's Problem in Linear Partial Differential Equations,''
Dover, New York, 1952.

8. T. Hasegawa and T. Torii, An automatic quadrature for cauchy principal value integrals,
Math. Comp. 56 (1991), 741�754.

9. A. I. Kalandiya, On a direct method of solution of an equation in wing theory and its
application to the theory of elasiticity, Mat. Sb. 42 (1957), 249�272.

10. P. Kim, A trigonometric quadrature rule for cauchy integrals with jacobi weight,
J. Approx. Theory, in press.

11. P. Kim and U. J. Choi, A quadrature rule for weighted cauchy integrals, J. Comp. Appl.
Math., in press.

12. P. Kim and U. J. Choi, A quadrature rule of interpolatory type for cauchy integrals,
J. Comp. Appl. Math., in press.

218 PHILSU KIM



13. H. R. Kutt, ``Quadrature Formulae for Finite Part Integrals,'' CSIR Special Report WISK
178, Pretoria, National Research Institute for Mathematical Sciences.

14. G. Monegato, The numerical evaluation of one-dimensional cauchy principal value
integrals, Computing 29 (1982), 337�354.

15. K. B. Oldham and J. Spanier, ``The Fractional Calculus,'' Academic Press, New York�
London, 1974.

16. D. P. Linz, On the approximate computation of certain strongly singular integrals,
computing 35 (1985), 345�353.

17. D. F. Paget, The numerical evaluation of hadamard finite-part integrals, Numer. Math. 36
(1981), 447�453.

18. G. Szego, ``Orthogonal Polynomials,'' Amer. Math. Soc. Colloquium Publication, Vol. 23,
Providence, RI, 1975.

19. T. Torii, T. Hasegawa, and H. Sugiura, An algorithm based on the fft for a generalized
chebyshev interpolation, Math. Comp. 54 (1990), 195�210.

219CHEBYSHEV QUADRATURE RULES


	1. INTRODUCTION 
	2. PRACTICAL IMPLEMENTATION 
	3. ASYMPTOTIC BEHAVIOUR FOR ... 
	4. CONVERGENCE RESULTS FOR CONTINUOUSLY DIFFERENTIABLE FUNCTIONS 
	5. CONVERGENCE RESULTS FOR ANALYTIC FUNCTIONS 
	REFERENCES 

